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Introduction

• Financial market volatility is driven by a complex interplay of economic conditions, corporate
shocks, investor anticipations, global policies, and economic disruptions, making stock
return forecasting challenging.

• Capturing long-term trends and external shocks is crucial for informed investment decisions.

• Traditional models struggle with sudden market shifts due to reliance on historical patterns.

• Deep learning models, while more accurate, lack interpretability, limiting their adoption in
finance.

• Company List: Amazon(AMZN), Google(GOOG), AT&T(T), Abbott Laboratories(ABT), Am-
gen(AMGN), CVS Health Corporation(CVS)

To enhance model transparency and reliability, we proposed a hybrid stock return predic-
tion framework that 1) uses PCMCI+ with DeepAR for causal feature selection and lag
optimization to better capture general daily trends and 2) leverages CD-NOD on real-time
macro-economic and company-level factors with Random Forest to capture the effect of
shock on stock price.

Fig. 1: Overview of the Proposed Stock Return Prediction Framework

1. Economic Impact Analysis Module

Fig. 2: Economic Impact Framework

Data Collection

• Microeconomic Data Company quarter reports (balance sheet, cash flow).
• Macroeconomic Indicators Monthly Economic data (CPI, GDP).

Frequency Alignment: We mapped each quarter to three monthly time-series vectors and then
regressed the monthly vector on the quarterly compound return, selecting the most represen-
tative month via hypothesis testing on the coefficients.

Prediction Model: Random Forest predicts extreme quarterly stock returns upon the release
of company financial statements, to capture shocks driven by economic fluctuations and expec-
tations.

CDNOD: Feature Selection from a Causal Lens

Fig. 3: Causal Graph for AT&T

After interpolating economic factors with daily stock prices, we applied CD-NOD with monthly
grouping and Fisher’s Z-test at a 0.01 significance level to capture causal relationships
between factors and stock price shocks.

Defining impactful features
• have a direct edge to stock price.
• connect to stock price through causal pathways in the learned graph.

We further performed pairwise regression to assess each predictor’s direct impact.

2. Stock Return Prediction Module

Data Collection & Pre-processing: We use historical data of 6 companies (3 Tech, 3 Healthcare)
from Jun 2020 to Feb 2025, including daily metrics of opening/closing price, high, low, and volume.
We calculate Daily return as: Rt =

Pt−Pt−1
Pt−1

.

Causal Feature Selection: Applied PCMCI+ algorithm for causal feature selection, identifying 8
key covariates based on their causal impacts.

Fig. 4: Causal Structure of Stock Return Predictors after PCMCI+ Analysis

Model Architecture: The model integrates historical returns, technical indicators, and entity em-
beddings into a concatenated input tensor. An enhanced LSTM with skip connections and varia-
tional dropout enables robust gradient flow. The probabilistic output layer generates a Gaussian
distribution of future returns, instead of just point estimates.

Fig. 5: DeepAR Model Pipeline

3. Sentiment Analysis Module

Model: FinBERT - Specialized NLP model for financial text sentiment analysis.
Data Collection & Pre-processing:

• AMZN, GOOG, CVS GitHub Tweet Dataset (June 2020 - May 2023).

• Collected Reddit posts and comments for additional sentiment data via API.

• Applied time-scaled linear interpolation for data smoothing.

Sentiment Scoring: Weighted FinBERT confidence levels with normalization to 0-1 range.

Fig. 6: Work Flow of Sentiment Analysis Module

Fusion Layer and Final Results

Fusion Layer architecture: This integrates DeepAR daily predictions with quarterly financial
data through an adaptive weighting mechanism, improving stock price forecasting accuracy.

Fig. 7: Fusion Layer Architecture

Evaluation Metrics: MAE, MAPE, RMSE, and Direction Accuracy.
Our model captures market trends effectively, with ABT stock showing 100% direction accuracy
and AT&T achieving exceptional short-term precision (MAE: $0.57).

Fig. 8: Stock Price Prediction Performances
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